Сила сопротивления

Сила сопротивления.

Сила, действующая на тело при его поступательном движении в жидкости или газе, называется силой сопротивления.

Сила сопротивления зависит от скорости тела относительно внешней среды и направлена противоположно вектору скорости тела.

гдеk — коэффициент пропорциональности, зависящий от скорости тела относительно среды, υ — модуль скорости тела относительно среды.

Импульс силы. Импульс тела

По­ня­тие им­пуль­са было вве­де­но еще в пер­вой по­ло­вине XVII века Рене Де­кар­том, а затем уточ­не­но Иса­а­ком Нью­то­ном. Со­глас­но Нью­то­ну, ко­то­рый на­зы­вал им­пульс ко­ли­че­ством дви­же­ния, – это есть мера та­ко­во­го, про­пор­ци­о­наль­ная ско­ро­сти тела и его массе. Со­вре­мен­ное опре­де­ле­ние: им­пульс тела – это фи­зи­че­ская ве­ли­чи­на, рав­ная про­из­ве­де­нию массы тела на его ско­рость:

= m

Пре­жде всего, из при­ве­ден­ной фор­му­лы видно, что им­пульс – ве­ли­чи­на век­тор­ная и его на­прав­ле­ние сов­па­да­ет с на­прав­ле­ни­ем ско­ро­сти тела, еди­ни­цей из­ме­ре­ния им­пуль­са слу­жит:

=

Рас­смот­рим, каким же об­ра­зом эта фи­зи­че­ская ве­ли­чи­на свя­за­на с за­ко­на­ми дви­же­ния. За­пи­шем вто­рой закон Нью­то­на, учи­ты­вая, что уско­ре­ние есть из­ме­не­ние ско­ро­сти с те­че­ни­ем вре­ме­ни:

На­ли­цо связь между дей­ству­ю­щей на тело силой, точ­нее, рав­но­дей­ству­ю­щей сил и из­ме­не­ни­ем его им­пуль­са. Ве­ли­чи­на про­из­ве­де­ния силы на про­ме­жу­ток вре­ме­ни носит на­зва­ние им­пуль­са силы. Из при­ве­ден­ной фор­му­лы видно, что из­ме­не­ние им­пуль­са тела равно им­пуль­су силы.

Какие эф­фек­ты можно опи­сать с по­мо­щью дан­но­го урав­не­ния (рис. 1)?

Рис. 1. Связь им­пуль­са силы с им­пуль­сом тела (Ис­точ­ник)

Стре­ла, вы­пус­ка­е­мая из лука. Чем доль­ше про­дол­жа­ет­ся кон­такт те­ти­вы со стре­лой (∆t), тем боль­ше из­ме­не­ние им­пуль­са стре­лы (∆ ), а сле­до­ва­тель­но, тем выше ее ко­неч­ная ско­рость.

Два стал­ки­ва­ю­щих­ся ша­ри­ка. Пока ша­ри­ки на­хо­дят­ся в кон­так­те, они дей­ству­ют друг на друга с рав­ны­ми по мо­ду­лю си­ла­ми, как учит нас тре­тий закон Нью­то­на. Зна­чит, из­ме­не­ния их им­пуль­сов также долж­ны быть равны по мо­ду­лю, даже если массы ша­ри­ков не равны.

Про­ана­ли­зи­ро­вав фор­му­лы, можно сде­лать два важ­ных вы­во­да:

1. Оди­на­ко­вые силы, дей­ству­ю­щие в те­че­ние оди­на­ко­во­го про­ме­жут­ка вре­ме­ни, вы­зы­ва­ют оди­на­ко­вые из­ме­не­ния им­пуль­са у раз­лич­ных тел, неза­ви­си­мо от массы по­след­них.

2. Од­но­го и того же из­ме­не­ния им­пуль­са тела можно до­бить­ся, либо дей­ствуя неболь­шой силой в те­че­ние дли­тель­но­го про­ме­жут­ка вре­ме­ни, либо дей­ствуя крат­ко­вре­мен­но боль­шой силой на то же самое тело.

Со­глас­но вто­ро­му за­ко­ну Нью­то­на, можем за­пи­сать:

∆t = ∆ = ∆ / ∆t

От­но­ше­ние из­ме­не­ния им­пуль­са тела к про­ме­жут­ку вре­ме­ни, в те­че­ние ко­то­ро­го это из­ме­не­ние про­изо­шло, равно сумме сил, дей­ству­ю­щих на тело.

Про­ана­ли­зи­ро­вав это урав­не­ние, мы видим, что вто­рой закон Нью­то­на поз­во­ля­ет рас­ши­рить класс ре­ша­е­мых задач и вклю­чить за­да­чи, в ко­то­рых масса тел из­ме­ня­ет­ся с те­че­ни­ем вре­ме­ни.

Если же по­пы­тать­ся ре­шить за­да­чи с пе­ре­мен­ной мас­сой тел при по­мо­щи обыч­ной фор­му­ли­ров­ки вто­ро­го за­ко­на Нью­то­на:

= m ,

то по­пыт­ка та­ко­го ре­ше­ния при­ве­ла бы к ошиб­ке.

При­ме­ром тому могут слу­жить уже упо­ми­на­е­мые ре­ак­тив­ный са­мо­лет или кос­ми­че­ская ра­ке­та, ко­то­рые при дви­же­нии сжи­га­ют топ­ли­во, и про­дук­ты этого сжи­га­е­мо­го вы­бра­сы­ва­ют в окру­жа­ю­щее про­стран­ство. Есте­ствен­но, масса са­мо­ле­та или ра­ке­ты умень­ша­ет­ся по мере рас­хо­да топ­ли­ва.

Краткие итоги

Несмот­ря на то что вто­рой закон Нью­то­на в виде «рав­но­дей­ству­ю­щая сила равна про­из­ве­де­нию массы тела на его уско­ре­ние» поз­во­ля­ет ре­шить до­воль­но ши­ро­кий класс задач, су­ще­ству­ют слу­чаи дви­же­ния тел, ко­то­рые не могут быть пол­но­стью опи­са­ны этим урав­не­ни­ем. В таких слу­ча­ях необ­хо­ди­мо при­ме­нять дру­гую фор­му­ли­ров­ку вто­ро­го за­ко­на, свя­зы­ва­ю­щую из­ме­не­ние им­пуль­са тела с им­пуль­сом рав­но­дей­ству­ю­щей силы. Кроме того, су­ще­ству­ет ряд задач, в ко­то­рых ре­ше­ние урав­не­ний дви­же­ния яв­ля­ет­ся ма­те­ма­ти­че­ски крайне за­труд­ни­тель­ным либо во­об­ще невоз­мож­ным. В таких слу­ча­ях нам по­лез­но ис­поль­зо­вать по­ня­тие им­пуль­са.

Вывод второго закона Ньютона

С по­мо­щью за­ко­на со­хра­не­ния им­пуль­са и вза­и­мо­свя­зи им­пуль­са силы и им­пуль­са тела мы можем вы­ве­сти вто­рой и тре­тий закон Нью­то­на.

Вто­рой закон Нью­то­на вы­во­дит­ся из со­от­но­ше­ния им­пуль­са силы и им­пуль­са тела.

Им­пульс силы равен из­ме­не­нию им­пуль­са тела:

Про­из­ве­дя со­от­вет­ству­ю­щие пе­ре­но­сы, мы по­лу­чим за­ви­си­мость силы от уско­ре­ния, ведь уско­ре­ние опре­де­ля­ет­ся как от­но­ше­ние из­ме­не­ния ско­ро­сти ко вре­ме­ни, в те­че­ние ко­то­ро­го это из­ме­не­ние про­изо­шло:

Под­ста­вив зна­че­ния в нашу фор­му­лу, по­лу­чим фор­му­лу вто­ро­го за­ко­на Нью­то­на:

Вывод третьего закона Ньютона

Для вы­ве­де­ния тре­тье­го за­ко­на Нью­то­на нам по­на­до­бит­ся закон со­хра­не­ния им­пуль­са.

Век­то­ры под­чер­ки­ва­ют век­тор­ность ско­ро­сти, то есть то, что ско­рость может из­ме­нять­ся по на­прав­ле­нию. После пре­об­ра­зо­ва­ний по­лу­чим:

Так как про­ме­жу­ток вре­ме­ни в за­мкну­той си­сте­ме был ве­ли­чи­ной по­сто­ян­ной для обоих тел, мы можем за­пи­сать:

Мы по­лу­чи­ли тре­тий закон Нью­то­на: два тела вза­и­мо­дей­ству­ют друг с дру­гом с си­ла­ми, рав­ны­ми по ве­ли­чине и про­ти­во­по­лож­ны­ми по на­прав­ле­нию. Век­то­ры этих сил на­прав­ле­ны нав­стре­чу друг к другу, со­от­вет­ствен­но, мо­ду­ли этих сил равны по сво­е­му зна­че­нию

2.6.4.Сила вязкого трения и сопротивления среды.

Сила вязкого трениявозникает между слоями одного и того же сплошного тела (жидкости или газа). Сила вязкого трения за­висят от относительной скорости смещения отдельных слоев газа или жидкости друг относительно друга. Например, вязкое трение возникает при течении жидкости или газа по трубам со скоростью(рис. 2.3).

Скорость слоев жидкости уменьшается при приближении их к стенкам трубы. Отношение разности скоростей в двух близких слоях, расположенных на расстоянии, называется средним градиентом скорости.

В соответствии с уравнением Ньютона модуль средней силы вязкого трения

(2.54)

где –коэффициент вязкости,S– площадь взаимодействующих слоев среды, расположенных на расстоянии ∆xдруг от друга.

Коэффициент вязкости зависит от агрегатного состояния и температуры вещества.

Коэффициент вязкости

Вещество

Вода

Водяной пар

Машинное масло

Воздух

1,0

0,013

0,018

Сила сопротивления возникает при движении твердых тел в жидкости или газе. Модуль силы сопротивления пропорционален плотности среды, площади поперечного сечения движущегося телаSи квадрату его скорости

, (2.55)

где – коэффициент сопротивления среды.

Тело, движущееся в среде испытывает действие силы вязкого трения (Fтр) и силы сопротивления (Fсопр). При небольших скоростях сила сопротивления меньше силы вязкого трения, а при больших – значительно превосходит ее (рис. 2.4).

При некотором значении скорости силыFтриFсопрстановятся равными по модулю.

Сила сопротивления среды зависит от формы движущегося тела. Форму тела, при которой сила сопротивления мала, называют обтекаемой. Ракетам, самолетам, автомобилям и другим машинам, движущимся с большими скоростями в воздухе или в воде, придают обтекаемую, каплеобразную форму

2.6.5.Сила упругости. Закон Гука.

При действии на тело внешних сил, возникает упругая и неупругая деформация.

П

x0=0

ри упругой деформации тело после прекращения действия внешних сил полностью восстанавливает свою форму и размеры. При неупругой деформации форма и размеры тела не восстанавливаются.

Упругая деформация пружины.

При растяжении пружины (рис 2.14) на величину относительно её равновесного состояния (х0= 0) возникает упругая сила, которая возвращает пружину в прежнее положение после прекращения действия внешней силы. Модуль упругой силы, возникающей при линейном растяжении или сжатии пружины определяется законом Гука.

, (2.56)

где – проекция силы упругости на осьx, знак минус учитывает противоположные направления силыи перемещения пружины.

Деформация стержня

Стержень длинной l0 и сечениемSпри действии силиперпендикулярно его торцам в противоположных направлениях деформируется (растягивается или сжимается) (рис 2.15). Деформация стержня определяется относительной величиной

(2.57)

где ∆l =l — l0 , l-длинна стержня после деформации.

Рис. 2.15

Опыт показывает, что

, (2.58)

где α – коэффициент упругости стержня,

=σ – нормальное напряжение, измеряемое в(паскаль).

Наряду с коэффициентом упругости aдля характеристики упругих свойств тел при нормальных напряжениях используютмодуль ЮнгаЕ = 1/a, который, как и напряжение, измеряется в паскалях.

Относительное удлинение (сжатие) и модуль Юнга в соответствии с равенствами (2.13 и 2.14) определяется из соотношений:

,. (2.59)

Модуль Юнга равен такому нормальному напряжению, при котором деформация стержня Dlравна его первоначальной длинеl0. В действительности при таких напряжениях происходит разрушение стержня.

Решая уравнение (2.58) относительно F, и подставляя вместоe=Dl/l0,a= 1/Е, получим формулу для определения силы деформирующей стержень с сечениемSна величину

, (2.60)

где – постоянный для стержня коэффициент, который в соответствии с законом Гука соответствует коэффициенту упругости стержня при его сжатии и растяжении.

При действии на стержень касательного (тангенциального) напряжения

силы F1 иF2приложены параллельно противоположным граням площадьюSпрямоугольного стержня вызываютдеформацию сдвига (рис 2.16).

Рис. 2.16

Если действие сил равномерно распределено по всей поверхности соответствующей грани, то в любом сечении, параллельном этим граням, возникает тангенциальное напряжение . Под действием напряжений тело деформируется так, что одна грань сместиться относительно другой на некоторое расстояниеа. Если тело мысленно разбить на элементарные, параллельные рассматриваем граням слои, то каждый слой окажется сдвинутым относительно соседних с ним слоев.

При деформации сдвига любая прямая, первоначально перпендикулярная к слоям, отклонится на некоторый угол φ. тангенс которого называется относительным сдвигом

, (2.61)

где b– высота грани. При упругих деформациях угол φ очень мал, поэтому можно считать, чтои.

Опыт показывает, что относительный сдвиг пропорционален тангенциальному напряжению

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *