Как увеличить ток зарядного устройства

Модернизация маломощного зарядного устройства

Рисунок 1

Основной особенностью этого устройства является работа в режиме частотной модуляции, который реализуется следующим образом. В течение цикла заряда индуктивности трансформатора напряжение базовой обмотки приложено плюсом через R3, C2 к базе ключевого транзистора, при этом C2 заряжается примерно до напряжения базовой обмотки. Когда ключ размыкается, напряжение на базовой обмотке меняется на обратное и, суммируясь с имеющемся на конденсаторе C2, запирает ключевой транзистор. С этого момента конденсатор C2 начинает перезаряжаться током, протекающим через токозадающие резисторы R1, R2 вплоть до открывания ключевого транзистора. Изменяя этот ток, что обеспечивается за счет соответствующего включения выходной секции оптрона DA1, можно в широких пределах регулировать частоту выходного напряжения при постоянной длительности зарядного цикла и, тем самым, изменять величину выходного тока ЗУ. Основным достоинством модуляции такого типа является практически бесконечный диапазон регулировки выходного тока без какого-либо влияния на режим насыщения ключевого транзистора.

К достоинствам устройства следует отнести достаточно высокую стабильность параметров при простой схеме, а также реализованную простыми средствами индикацию выходного тока, что отличает его от большинства ЗУ серийного производства.

Основным же недостатком является возможность насыщения трансформатора, что связано с неопределенностью максимального тока через ключевой транзистор и требует либо применения трансформаторов с запасом по мощности, либо подстройки параметров элементов R3, C2 для каждого конкретного образца ЗУ под имеющийся трансформатор.

При этом следует отметить, что режим работы устройств, выполненных по такой схеме, зачастую устойчив только при гарантированном отсутствии насыщения трансформатора. В ином случае устройство может стать неуправляемым, поскольку из-за резкого возрастания амплитуды колебаний, возникающих на всех обмотках после разряда индуктивности насыщенного трансформатора, может возникнуть режим неуправляемых автоколебаний, который только в некоторых случаях удается устранить включением дополнительного конденсатора параллельно базо-эмиттерному переходу ключевого транзистора. В данном случае это конденсатор C5.

Недостатком является также тот факт, что выходная мощность устройства принципиально ограничена как из-за неопределенности режима ключевого транзистора, так и из-за недопустимого роста потерь в выходной секции ЗУ при увеличении зарядного тока.

Принципиальная схема ЗУ другого типа представлена на Рис.2. Следует отметить, что вариаций на тему этой схемы несколько, в том числе со стабилизацией и ограничением напряжения по первичной стороне, однако будем рассматривать только наиболее универсальный вариант с прямой стабилизацией по выходному току.

Рисунок 2

Основной особенностью этой схемы является использование элементов (VT1, R4, R6), которые контролируют величину максимального тока через ключевой транзистор и, соответственно, через первичную обмотку трансформатора. Такая особенность делает это устройство предпочтительным для серийного производства, т.к. при этом любая подстройка схемы оказывается ненужной, а максимальный ток через ключ однозначно определяется параметрами элементов схемы.

Однако, при введении этих элементов, конденсатор С3, в отличие от предыдущей схемы, не может создавать дополнительное запирающее напряжение на базе VT2 при разряде индуктивности, поскольку базо-эмиттерный переход этого транзистора при отрицательной полярности напряжения на базе зашунтирован прямосмещенным коллекторно-базовым переходом транзистора VT1, а кроме этого, верхний по схеме вывод базовой обмотки через диод VD6 замкнут на отрицательную шину первичного источника. Из-за этого ключевой транзистор включается сразу же по окончании цикла разряда индуктивности без дополнительной задержки, обусловленной перезарядом конденсатора C3. Поэтому устройства такого типа всегда работают в режиме неуправляемых автоколебаний и резистор R3 необходим только для начального запуска. Реализуемый в таком случае тип модуляции можно считать модуляцией смешанного типа, при которой изменяется и частота, и длительность зарядного цикла. При этом частота преобразования может быть в несколько раз более высокой, нежели у первого рассмотренного ЗУ, что создает значительно больше помех для окружающих электронных устройств.

Поскольку данное устройство работает в режиме неуправляемых автоколебаний, единственным доступным способом регулировки выходного тока является изменение максимального тока через индуктивность. Такую регулировку предположительно можно обеспечить двумя способами – за счет изменения сопротивления резистора R6 или за счет управляющего тока, создающего падение напряжения на резисторе R4, которое суммируется с падением на R6. При этом частота преобразования по мере уменьшения выходного тока должна была бы увеличиваться, поскольку индуктивность заряжается до меньшего максимального тока за меньший интервал времени.

Однако реально частота преобразования в такой схеме в значительной степени определяется параметрами насыщения ключевого транзистора, поскольку время выхода биполярного ключа из насыщения – величина фиксированная, в некоторой степени зависящая от тока через C3, R5. Поэтому попытки уменьшить выходной ток упомянутыми способами дают незначительный эффект, а при дальнейших усилиях ключевой режим нарушается и конвертер превращается в линейный усилитель класса А. Это объясняется тем, что даже при существенном увеличении номинала резистора R6 насыщающий ток базы, создаваемый базовой обмоткой через С3, R5, почти не меняется, и время пребывания VT2 в насыщенном режиме меняется весьма слабо. Если же для уменьшения максимального тока через индуктивность искусственно увеличивать падение напряжения на R4, то при некотором его значении величина насыщающего тока становится недостаточной из-за замыкания его через открытый транзистор VT1, и ключевой транзистор переходит в режим линейного усиления. Поэтому в большинстве ЗУ такого типа, в которых отсутствует обратная связь по выходному току, существенно изменить величину выходного тока почти невозможно.

Если же устройство содержит обратную связь по выходному току, как это показано на Рис.2, то по аналогии должен получаться такой же эффект, как при искусственном увеличении напряжения на резисторе R4. Однако здесь следует иметь в виду, что обратную связь в импульсных устройствах трудно сделать абсолютно линейной, а поэтому в реальных устройствах она в той или иной степени имеет импульсный характер. С учетом этого, за счет ООС регулируется не только величина выходного тока, но и временные параметры преобразования. Т.е. изменяется характер модуляции. Например, в некоторых испытанных устройствах подобного типа за счет ООС характер модуляции становится подобен частотной, в некоторых – прерывистой, что в принципе позволяет принудительно обеспечить достаточно широкий диапазон регулировки выходного тока.

Однако цепи стабилизации в этом устройстве содержат слишком много элементов. При этом за счет транзисторов VT1, VT3 обеспечивается настолько высокая электрическая стабильности выходного тока (лучше 0.2%), что она превышает более чем на порядок температурную стабильность этого параметра. Это делает некоторые элементы цепи стабилизации совершенно бессмысленными, поскольку обнаружить их влияние на фоне нестабильности при изменении температуры практически невозможно. Поэтому в некоторых серийных ЗУ такого типа цепи стабилизации по выходному току вообще не используются, а для ограничения выходного напряжения используется выпрямитель напряжения базовой обмотки, который через стабилитрон подключен к базе токоограничивающего или ключевого транзистора. Однако при этом стабильность ЗУ как источника тока в широком диапазоне входных напряжений оказывается недостаточной.

Кроме этого, поскольку зарядное устройство выполняет функцию источника тока, встроенная индикация должна соответствовать этой функции. Т.е. светодиод должен светиться только тогда, когда есть выходной ток. Однако, поскольку при больших выходных токах это сделать не очень просто из-за слишком большой рассеиваемой мощности на элементах схемы индикации, в подавляющем большинстве серийно выпускаемых устройств индицируется не ток, а выходное напряжение. Недостаток такой индикации очевиден – например, нормальный заряд индицируется, даже если Вы забыли соединить зарядное устройство с нагрузкой или в заряжаемом устройстве отсутствует аккумуляторная батарея.

Поскольку характеристики обоих рассмотренных выше устройств не оптимальны, возник вопрос, нельзя ли объединить их достоинства и исключить недостатки. Разумеется без заметного увеличения результирующей цены. То, что получилось в результате решения этой задачи, представлено на Рис.3.

Рисунок 3

Рассмотрим принципиальные изменения, которые касаются первичной высоковольтной секции модернизированного ЗУ.

Во-первых, токозадающий резистор R2+R3 подключен не к положительной шине питания, а к выходу схемы подавления выброса напряжения на индуктивности рассеяния (VD4, C2). Это не только позволило исключить из схемы один резистор большого габарита, но и помогло уменьшить амплитуду колебательного процесса на разомкнутой индуктивности, что положительно отразилось на устойчивости генерируемых колебаний при изменении первичного напряжения.

Во-вторых, чтобы избежать шунтирования базо-эмиттерного перехода ключевого транзистора в обратном направлении коллекторно-базовым переходом токоограничивающего транзистора, этот транзистор заменен на два прямосмещенных диода VD2, VD3. Заменить эти диоды низковольтным обратносмещенным стабилитроном, как это делается в некоторых ЗУ китайского производства, нельзя, поскольку при запертом состоянии VT1 стабилитрон превращается в прямосмещенный диод и это делает устройство эквивалентным изображенному на Рис. 2. При этом совокупность элементов VD2, VD3 и R5 оптимизированного ЗУ ограничивает максимальный ток через ключ VT1 практически так же, как элементы VT1, R4, R6 в устройстве, представленном на Рис. 2. И, в то же время, осуществляется режим управляемого перезаряда конденсатора C3 так же, как в устройстве, представленном на Рис.1. Следовательно, в ЗУ на Рис.3 реализована частотная модуляция, устраняющая любые проблемы с величиной выходного тока. Т.е. такое устройство с одинаковым успехом можно использовать как для зарядки аккумуляторов старого образца с зарядным током 70 мА и меньше, так и для зарядки современных, без ухудшения параметров ключевого режима коммутации при регулировке. В то же время, исключается возможность насыщения трансформатора, поскольку максимальное значение тока через ключ однозначно определяется по формуле:

Imax ≈ 0.6 В / 0.5

Теперь рассмотрим изменения, касающиеся выходной секции ЗУ. Цепи стабилизации выполнены точно так же, как это сделано в первом рассмотренном устройстве, поскольку они достаточно эффективны. При этом выходной ток определяется сопротивлением резистора R8, и его нестабильность при изменении напряжения в сети вдвое не превышает 5%. Поэтому изменения касаются только схемы индикации выходного тока.

Здесь следует напомнить, что зарядное устройство представляет собой источник тока, выходное напряжение которого может изменяться от нуля (режим короткого замыкания на выходе) до некоторого максимального напряжения, величина которого определяется предельно допустимым напряжением питания обслуживаемого устройства, из которого извлекли аккумуляторную батарею (режим холостого хода). При этом, чтобы обеспечить индикацию зарядного тока с помощью стандартного светодиода, в выходной секции ЗУ необходим внутренний источник напряжения для его питания, причем такой, который обеспечивал бы свечение диода и при закороченном выходе ЗУ.

Однако в таком состоянии ни на одном элементе в выходной секции не имеется достаточного напряжения (~1.8 В) для обеспечения светодиодной индикации. Поэтому в большинстве серийных ЗУ это проблема решена просто – индицируется не ток, а выходное напряжение.

Для индикации наличия зарядного тока источник питания светодиода можно реализовать так, как это сделано на Рис.1, т.е. включить в цепь заряда резистор необходимого номинала, параллельно которому включить светодиод. Однако, поскольку падение напряжения на стандартном светящемся светодиоде не может быть менее примерно 1.8 В, то при зарядном токе, например 300 мА (именно на такой ток рассчитано устройство, представленное на рис. 3), рассеиваемая на этом резисторе источнике мощность составит примерно 0.6 Вт. Следовательно, для реализации такого источника необходим резистор мощностью 1 Вт, габариты которого слишком велики по отношению к объему остальных элементов зарядного устройства. Кроме того, вся эта мощность рассеивается в корпусе ЗУ, что будет способствовать повышению его рабочей температуры. Поэтому сопротивление этого резистора следует по возможности уменьшать, и те решения, которые использованы в первом рассмотренном устройстве, использовать нельзя.

Решить эту проблему можно, если к падению напряжения на резисторе R8 добавить без существенного увеличения рассеиваемой мощности примерно 0.6 В. Такое добавочное напряжение формируется с помощью R7, VD7. Следует отметить, что это напряжение импульсное, поэтому рассеиваемая на указанных элементах мощность пренебрежимо мала.

Отмечу, что представленная на Рис. 3 схема не является универсальной и пригодна лишь для реализации устройств с выходной мощностью не более единиц Ватт. Это объясняется тем, что для увеличения выходной мощности следует увеличивать емкость C3, которая совместно с R4 определяет степень насыщения транзисторного ключа и время его пребывания в таком состоянии. Но, в тоже время, следует увеличивать частоту преобразования. А для этого необходимо по возможности уменьшать емкость С3, поскольку существенно уменьшить сопротивление токозадающего резистора R2+R3 невозможно из-за роста выделяющейся на нем мощности. Эти противоречивые требования ограничивают выходную мощность устройства на указанном уровне.

Принципиальная схема

Схема типовой китайской зарядки, срисованная с платы, показана на рис. 1. Может быть и вариант с перестановкой диодов VD1, VD3 и стабилитрона VD4 на отрицательную цепь — рис.2.

А у более «продвинутых» вариантов могут быть выпрямительные мосты на входе и выходе. Могут быть и отличия в номиналах деталей. Кстати, нумерация на схемах дана произвольно. Но сути дела это не меняет.

Рис. 1. Типовая схема китайского сетевого зарядного устройства для сотового телефона.

Несмотря на простоту, это все же неплохой импульсный блок питания, и даже стабилизированный, который вполне сгодится и для питания чего-то другого, кроме зарядного устройства сотового телефона.

Рис. 2. Схема сетевого зарядного устройства для сотового телефона с измененным положением диода и стабилитрона.

Схема сделана на основе высоковольтного блокинг-генератора, широта импульсов генерации которого регулируется при помощи оптопары, светодиод которой получает напряжение от вторичного выпрямителя. Оптопара понижает напряжение смещения на базе ключевого транзистора VТ1, которое задается резисторами R1 и R2.

Нагрузкой транзистора VТ1 служит первичная обмотка трансформатора Т1. Вторичной, понижающей, является обмотка 2, с которой снимается выходное напряжение. Еще есть обмотка 3, она служит и для создания положительной обратной связи для генерации, и как для источника отрицательного напряжения, который выполнен на диоде VD2 и конденсаторе С3.

Этот источник отрицательного напряжения нужен для снижения напряжения на базе транзистора VТ1, когда оптопара U1 открывается. Элементом стабилизации, определяющим выходное напряжение, является стабилитрон VD4.

Его напряжение стабилизации таково, что в сумме с прямым напряжением ИК-светодиода оптопары U1 дает именно те самые необходимые 5V, которые и требуются. Как только напряжение на С4 превышает 5V, стабилитрон VD4 открывается и через него проходит ток на светодиод оптопары.

И так, работа устройства вопросов не вызывает. Но что делать, если мне нужно не 5V, а, например, 9V или даже 12V? Вопрос такой возник вместе с желанием организовать сетевой блок питания для мультиметра. Как известно, популярные в радиолюбительских кругах, мультиметры питаются от «Кроны», — компактной батареи напряжением 9V.

И в «походнополевых» условиях это вполне удобно, но вот в домашних или лабораторных хотелось бы питания от электросети. По схеме, «зарядка» от сотового телефона в принципе подходит, в ней есть трансформатор, и вторичная цепь не контактирует с электросетью. Проблема только в напряжении питания, — «зарядка» выдает 5V, а мультиметру нужно 9V.

На самом деле, проблема с увеличением выходного напряжения решается очень просто. Нужно, всего лишь, заменить стабилитрон VD4. Чтобы получить напряжение, подходящее для питания мультиметра, нужно поставить стабилитрон на стандартное напряжение 7,5V или 8,2V. При этом, выходное напряжение будет, в первом случае, около 8,6V, а во втором около 9,ЗV, что, и то и другое, вполне годится для мультиметра. Стабилитрон, например, 1N4737 (это на 7,5V) или 1N4738 (это на 8,2V).

Впрочем, можно и другой маломощный стабилитрон на данное напряжение.

Испытания показали хорошую работу мультиметра при питании от такого источника питания. Кроме того, был попробован и старый карманный радиоприемник с питанием от «Кроны», -работал, только помехи от блока питания слегка мешали. Напряжением в 9V дело совсем не ограничивается.

Рис. 3. Узел регулировки напряжения для переделки китайского зарядного устройства.

Хотите 12V? — Не проблема! Ставим стабилитрон на 11V, например, 1N4741. Только нужно конденсатор С4 заменить более высоковольтным, хотя бы на 16V. Можно получить и еще большее напряжение. Если вообще удалить стабилитрон будет постоянное напряжение около 20V, но оно будет не стабилизированное.

Можно даже сделать регулируемый блок питания, если стабилитрон заменить регулируемым стабилитроном, таким как TL431 (рис. 3). Выходное напряжение можно регулировать, в этом случае, переменным резистором R4.

Каравкин В. РК-2017-05.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *